20 research outputs found

    Development of a scalable generic platform for adaptive optics real time control

    Full text link
    The main objective of the present project is to explore the viability of an adaptive optics control system based exclusively on Field Programmable Gate Arrays (FPGAs), making strong use of their parallel processing capability. In an Adaptive Optics (AO) system, the generation of the Deformable Mirror (DM) control voltages from the Wavefront Sensor (WFS) measurements is usually through the multiplication of the wavefront slopes with a predetermined reconstructor matrix. The ability to access several hundred hard multipliers and memories concurrently in an FPGA allows performance far beyond that of a modern CPU or GPU for tasks with a well defined structure such as Adaptive Optics control. The target of the current project is to generate a signal for a real time wavefront correction, from the signals coming from a Wavefront Sensor, wherein the system would be flexible to accommodate all the current Wavefront Sensing techniques and also the different methods which are used for wavefront compensation. The system should also accommodate for different data transmission protocols (like Ethernet, USB, IEEE 1394 etc.) for transmitting data to and from the FPGA device, thus providing a more flexible platform for Adaptive Optics control. Preliminary simulation results for the formulation of the platform, and a design of a fully scalable slope computer is presented.Comment: Paper presented as part of SPIE ICOP 2015 Conference Proceeding

    UNICS - An Unified Instrument Control System for Small/Medium Sized Astronomical Observatories

    Full text link
    Although the astronomy community is witnessing an era of large telescopes, smaller and medium sized telescopes still maintain their utility being larger in numbers. In order to obtain better scientific outputs it is necessary to incorporate modern and advanced technologies to the back-end instruments and to their interfaces with the telescopes through various control processes. However often tight financial constraints on the smaller and medium size observatories limit the scope and utility of these systems. Most of the time for every new development on the telescope the back-end control systems are required to be built from scratch leading to high costs and efforts. Therefore a simple, low cost control system for small and medium size observatory needs to be developed to minimize the cost and efforts while going for the expansion of the observatory. Here we report on the development of a modern, multipurpose instrument control system UNICS (Unified Instrument Control System) to integrate the controls of various instruments and devices mounted on the telescope. UNICS consists of an embedded hardware unit called Common Control Unit (CCU) and Linux based data acquisition and User Interface. The Hardware of the CCU is built around the Atmel make ATmega 128 micro-controller and is designed with a back-plane, Master Slave architecture. The Graphical User Interface (GUI) has been developed based on QT and the back end application software is based on C/C++. UNICS provides feedback mechanisms which give the operator a good visibility and a quick-look display of the status and modes of instruments. UNICS is being used for regular science observations since March 2008 on 2m, f/10 IUCAA Telescope located at Girawali, Pune India.Comment: Submitted to PASP, 10 Pages, 5 figure

    Robotic Laser-Adaptive-Optics Imaging of 715 Kepler Exoplanet Candidates using Robo-AO

    Get PDF
    The Robo-AO Kepler Planetary Candidate Survey is designed to observe every Kepler planet candidate host star with laser adaptive optics imaging to search for blended nearby stars, which may be physically associated companions and/or responsible for transit false positives. In this paper we present the results from the 2012 observing season, searching for stars close to 715 representative Kepler planet candidate hosts. We find 53 companions, 44 of which are new discoveries. We detail the Robo-AO survey data reduction methods including a method of using the large ensemble of target observations as mutual point-spread-function references, along with a new automated companion-detection algorithm designed for large adaptive optics surveys. Our survey is sensitive to objects from 0.15" to 2.5" separation, with contrast ratios up to delta-m~6. We measure an overall nearby-star-probability for Kepler planet candidates of 7.4% +/- 1.0%, and calculate the effects of each detected nearby star on the Kepler-measured planetary radius. We discuss several KOIs of particular interest, including KOI-191 and KOI-1151, which are both multi-planet systems with detected stellar companions whose unusual planetary system architecture might be best explained if they are "coincident multiple" systems, with several transiting planets shared between the two stars. Finally, we detect 2.6-sigma evidence for <15d-period giant planets being 2-3 times more likely be found in wide stellar binaries than smaller close-in planets and all sizes of further-out planets.Comment: Accepted by ApJ. Minor updates & improved statistical analysis; no changes to results. 15 pages, 13 figure

    The Robo-AO software: fully autonomous operation of a laser guide star adaptive optics and science system

    Get PDF
    Robo-AO is the first astronomical laser guide star adaptive optics (AO) system designed to operate completely independent of human supervision. A single computer commands the AO system, the laser guide star, visible and near-infrared science cameras (which double as tip-tip sensors), the telescope, and other instrument functions. Autonomous startup and shutdown sequences as well as concatenated visible observations were demonstrated in late 2011. The fully robotic software is currently operating during a month long demonstration of Robo-AO at the Palomar Observatory 60-inch telescope

    A survey of the high order multiplicity of nearby solar-type binary stars with Robo-AO

    Get PDF
    We conducted a survey of nearby binary systems composed of main sequence stars of spectral types F and G in order to improve our understanding of the hierarchical nature of multiple star systems. Using Robo-AO, the first robotic adaptive optics instrument, we collected high angular resolution images with deep and well-defined detection limits in the SDSS ii' band. A total of 695 components belonging to 595 systems were observed. We prioritized observations of faint secondary components with separations over 1010'' to quantify the still poorly constrained frequency of their sub-systems. Of the 214 secondaries observed, 39 contain such subsystems; 19 of those were discovered with Robo-AO. The selection-corrected frequency of secondary sub-systems with periods from 103.510^{3.5} to 10510^5 days is 0.12±\pm0.03, the same as the frequency of such companions to the primary. Half of the secondary pairs belong to quadruple systems where the primary is also a close pair, showing that the presence of sub-systems in both components of the outer binary is correlated. The relatively large abundance of 2+2 quadruple systems is a new finding, and will require more exploration of the formation mechanism of multiple star systems. We also targeted close binaries with periods less than 100~yr, searching for their distant tertiary components, and discovered 17 certain and 2 potential new triples. In a sub-sample of 241 close binaries, 71 have additional outer companions. The overall frequency of tertiary components is not enhanced, compared to all (non-binary) targets, but in the range of outer periods from 10610^6 to 107.510^{7.5} days (separations on the order of 500~AU), the frequency of tertiary components is 0.16±\pm0.03, exceeding by almost a factor of two the frequency of similar systems among all targets (0.09)

    Bringing the Visible Universe into Focus with Robo-AO

    Get PDF
    The angular resolution of ground-based optical telescopes is limited by the degrading effects of the turbulent atmosphere. In the absence of an atmosphere, the angular resolution of a typical telescope is limited only by diffraction, i.e., the wavelength of interest, λ, divided by the size of its primary mirror's aperture, D. For example, the Hubble Space Telescope (HST), with a 2.4-m primary mirror, has an angular resolution at visible wavelengths of ~0.04 arc seconds. The atmosphere is composed of air at slightly different temperatures, and therefore different indices of refraction, constantly mixing. Light waves are bent as they pass through the inhomogeneous atmosphere. When a telescope on the ground focuses these light waves, instantaneous images appear fragmented, changing as a function of time. As a result, long-exposure images acquired using ground-based telescopes - even telescopes with four times the diameter of HST - appear blurry and have an angular resolution of roughly 0.5 to 1.5 arc seconds at best. Astronomical adaptive-optics systems compensate for the effects of atmospheric turbulence. First, the shape of the incoming non-planar wave is determined using measurements of a nearby bright star by a wavefront sensor. Next, an element in the optical system, such as a deformable mirror, is commanded to correct the shape of the incoming light wave. Additional corrections are made at a rate sufficient to keep up with the dynamically changing atmosphere through which the telescope looks, ultimately producing diffraction-limited images. The fidelity of the wavefront sensor measurement is based upon how well the incoming light is spatially and temporally sampled. Finer sampling requires brighter reference objects. While the brightest stars can serve as reference objects for imaging targets from several to tens of arc seconds away in the best conditions, most interesting astronomical targets do not have sufficiently bright stars nearby. One solution is to focus a high-power laser beam in the direction of the astronomical target to create an artificial reference of known shape, also known as a 'laser guide star'. The Robo-AO laser adaptive optics system employs a 10-W ultraviolet laser focused at a distance of 10 km to generate a laser guide star. Wavefront sensor measurements of the laser guide star drive the adaptive optics correction resulting in diffraction-limited images that have an angular resolution of ~0.1 arc seconds on a 1.5-m telescope

    Know The Star, Know the Planet. IV. A Stellar Companion to the Host star of the Eccentric Exoplanet HD 8673b

    Get PDF
    HD 8673 hosts a massive exoplanet in a highly eccentric orbit (e=0.723). Based on two epochs of speckle interferometry a previous publication identified a candidate stellar companion. We observed HD 8673 multiple times with the 10 m Keck II telescope, the 5 m Hale telescope, the 3.63 m AEOS telescope and the 1.5m Palomar telescope in a variety of filters with the aim of confirming and characterizing the stellar companion. We did not detect the candidate companion, which we now conclude was a false detection, but we did detect a fainter companion. We collected astrometry and photometry of the companion on six epochs in a variety of filters. The measured differential photometry enabled us to determine that the companion is an early M dwarf with a mass estimate of 0.33-0.45 M?. The companion has a projected separation of 10 AU, which is one of the smallest projected separations of an exoplanet host binary system. Based on the limited astrometry collected, we are able to constrain the orbit of the stellar companion to a semi-major axis of 35{60 AU, an eccentricity ? 0.5 and an inclination of 75{85?. The stellar companion has likely strongly in uenced the orbit of the exoplanet and quite possibly explains its high eccentricity.Comment: Accepted to the Astronomical Journal, 6 Pages, 5 Figure
    corecore